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Abstract—Recent algorithms for monocular motion capture
(MoCap) estimate weak-perspective camera matrices between
images using a small subset of approximately-rigid points on
the human body (i.e. the torso and hip). A problem with
this approach, however, is that these points are often close
to coplanar, causing canonical linear factorisation algorithms
for rigid structure from motion (SFM) to become extremely
sensitive to noise. In this paper, we propose an alternative
solution to weak-perspective SFM based on a convex relaxation
of graph rigidity. We demonstrate the success of our algorithm
on both synthetic and real world data, allowing for much
improved solutions to markerless MoCap problems on human
bodies. Finally, we propose an approach for solving the two-
fold ambiguity over bone direction using a k-nearest neighbour
kernel density estimator.

I. INTRODUCTION

An estimate of 3D human pose obtained from a monoc-
ular image can be used to initialise an articulated tracker
(e.g. [1]–[3]), inject rigid keyframes into non-rigid SFM
algorithms (e.g. [4]) or train improved parts-based detectors
(e.g. [5]). In this paper, we consider the problem of estimat-
ing 3D human pose given the projected 2D position of each
joint in several non-consecutive images. These point cor-
respondences may be manually annotated or automatically
generated using methods such as [5], [6]. We do not assume
any prior on the skeletal dimensions, except that they do not
vary between images.

Wei and Chai [7] recently proposed an approach for solv-
ing non-rigid structure from motion (NRSFM) specifically
for human bodies, taking advantage of empirically validated
rigid constraints in the torso and hip. Their approach is
notable in comparison to previous literature in the area [9]–
[11] as it i) makes no assumptions about bone lengths, ii) is
not limited/constrained to modeling shapes previously seen
in a training set, and iii) can handle missing body points.

Subsequent work by Valmadre and Lucey [12] demon-
strated that the non-linear minimisation in the original
algorithm could be replaced by the factorisation algorithm
of Tomasi and Kanade [8], which is much faster and not
prone to local optima, since it only requires an SVD and a
small quadratic program. Unfortunately, when the observed
structure is coplanar the decomposition is not unique even
up to a 3×3 affine transform, supporting Ullman’s theorem

Figure 1: Wei and Chai [7] recognised that the human torso
and hip are approximately rigid. These rigid substructures
are essential for estimating the camera matrices of 3D non-
rigid human structure from 2D point projections. Unfortu-
nately, in practice these rigid substructures are often close to
coplanar making them sensitive under the canonical Tomasi
and Kanade factorisation method [8].

that at least three views and four non-coplanar points are
required [13]. In practice, the vector corresponding to the
third singular value will be determined by noise and an affine
metric upgrade will not be sufficient.

In the area of perspective geometry, Li [14] recently
presented a seminal algorithm for reconstructing a 3D scene
from 2D point correspondences without having to estimate
camera matrices. The approach treats the structure as a
rigid 3D graph, first finding the lengths of the edges, then
solving for the vertex positions using graph realisation, also
known as graph embedding or multi-dimensional scaling.
Both stages are expressed as a convex optimisation using
the trace heuristic for matrix rank. A drawback of their
algorithm, however, is a requirement that the cameras are
already calibrated.

This paper contributes an algorithm which extends the
work of [14] to a weak-perspective camera. Our work differs
fundamentally to Li’s, however, in a number of ways. Firstly,
in Li’s work the camera centres themselves are nodes in the
graph, whereas in our weak-perspective extension, the graph



consists solely of the observed structure. As a direct result,
we do not require camera calibration to be known a priori.
Secondly, ours is the first work to characterise theoretically
and empirically the robustness that graph rigidity SFM
exhibits to coplanar structure. We show that our algorithm
degrades gracefully rather than catastrophically in the limit
of coplanarity. However, in situations where the structure
has considerable variance in three dimensions, canonical
SFM remains a more accurate and computationally attractive
option.

II. TOMASI AND KANADE’S SFM
Tomasi and Kanade’s algorithm involves the rank-3 fac-

torisation of a measurement matrix W ∈ R2F×N into
a rotation matrix R ∈ R2F×3 and a structure matrix
S ∈ R3×N . Using an SVD to factorise W = R̂Ŝ minimises∥∥W − R̂Ŝ

∥∥2
F
, (1)

corresponding to the maximum likelihood estimator under
an assumption of Gaussian projection noise. Metric recon-
struction (up to a similarity transform) is obtained by finding
G ∈ R3×3,

W = R̂Ŝ = R̂GG−1Ŝ = RS, (2)

that optimally restores the orthogonality and aspect ratio of
the rotation matrices.

When rank(W) < 3, the factorisation is not unique, even
up to an affine transformation. For a set of coplanar points,
the structure matrix S, and therefore the measurement matrix
W, is at most rank-2. In this case, the true rotation and struc-
ture are not necessarily given by an affine transformation of
R̂ and Ŝ.

Poelman and Kanade [15] extended the factorisation algo-
rithm to weak perspective projection. They also proposed a
linear least-squares solution for the affine correction matrix
by instead solving for Q = GGT . If the resulting Q matrix
is not positive semidefinite, then an imaginary G matrix
results and the method fails. Novins and Arvo [16] suggested
that semidefinite programming be used to constrain Q � 0.

III. WEI AND CHAI’S SFM
Wei and Chai [7] recently presented a method for solving

for the 3D pose of a human body given point correspon-
dences between uncalibrated, monocular images. Their ap-
proach was originally employed to solve non-rigid SFM. Re-
cently, however, it was demonstrated [12] that their approach
is only applicable to rigid SFM problems. Wei and Chai
effectively reformulated the task of SFM using Pythagoras’
theorem. Assume we have a set of B edges (or “bones”) B
which define a rigid graph. Let `i be the length of edge i,
qti be the projected length of edge i in frame t, st be the
weak perspective scale of frame t and zti be the relative
out-of-plane depth across edge i in frame t,

`2i − (qti)
2s−2t − (zti)

2 = 0, ∀t ∈ F , i ∈ B . (3)

Figure 2: Wei and Chai [7] enforce rigidity by constraining
the sum of the depths around a closed rigid triangle to be
zero for each frame. Since the sign of the depths is unknown,
they seek an expression in the squared depths.

This is an under-constrained system of homogeneous linear
equations Ax = 0, with

x =
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z
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 .
Defining a set of rigid triangles T , rigidity is enforced by

requiring that the sum of the depths around a closed triangle
must be zero (see Figure 2),

zti + ztj + ztk = 0 (4)

(zti)
2 = (ztj)

2 + 2ztiz
t
j + (ztk)

2 (5)[
(zti)

2 − (ztj)
2 − (ztk)

2
]2

= 4(ztj)
2(ztk)

2 . (6)

Each rigid triangle (i, j, k) ∈ T comprises an extra length ei
and the lengths of two existing bones `j and `k. Substituting
(3) into (6) gives a system of quadratic equations in the
squared variables, with x augmented to include the extra
lengths ei,[

e2i − (qti)
2s−2t − (ztj)

2 − (ztk)
2
]2

= 4(ztj)
2(ztk)

2 (7)

xTCt
ijkx = 0, ∀t ∈ F , (i, j, k) ∈ T . (8)

The overall problem can therefore be expressed as,

minimise
`,e,s,z

‖Ax‖22 + λ
∑
t∈F

∑
(i,j,k)∈T

(
xTCt

ijkx
)2

subject to x � 0, 1T ` = 1 .

(9)

The parameter λ trades off the penalty for non-rigidity
against projection error and must be chosen heuristically.



�ij

1

st

qt
ij zt

i

zt
j

image
plane

Figure 3: Weak perspective projection defines a right-angled
triangle. This simple insight can be employed to pose rigid
SFM as a graph rigidity problem that unlike Li [14] does
not require calibrated cameras.

Unfortunately this optimisation is not convex due to the
introduction of the quartic rigidity term, and in practice is
prone to local minima and lacks a deterministic solution,
unlike traditional Tomasi and Kanade factorisation.

IV. GRAPH RIGIDITY SFM

Although it was never presented as such, Wei and Chai’s
SFM method is an implicit application of graph rigidity
theory. A graph is rigid if the position of its vertices can
be determined uniquely (up to a Euclidean transform) from
the length of its edges. For a 3D graph with N vertices to
be rigid, it must have at least 3N − 6 “properly-distributed”
edges [14], which corresponds to a maximally connected
graph for a triangle or tetrahedron. In this section we will
present a convex relaxation for weak-perspective rigid SFM
based on graph rigidity.

A. Posing SFM as Graph Embedding

Assume we have a set of edges defining a rigid graph,
E . This time let `ij be the length of edge (i, j), st be the
scale of frame t, qtij be the projected length of edge (i, j) in
frame t and zti be the distance of point i from the image
plane, relative to an arbitrary origin. The expression for
projection error is constructed using Pythagoras’ theorem
(see Figure 3). This formulation is similar to that of [7],
with the exception that the z components are expressed in
terms of point position not edge depth, implicitly encoding
the rigidity in a single objective function,

E =
∑
t∈F

∑
(i,j)∈E

[
`2ij − (qtij)

2s−2t − (zti − ztj)2
]2

(10)

E =
∑
t∈F

∑
(i,j)∈E

[
(bij)

T `− (ctij)
T s− zTt Dijzt

]2
(11)

` =

`
2
(1)

...
`2(E)

 , s =

s
−2
1
...
s−2F

 , zt =

 z
t
1
...
ztN

 .

Substituting Zt = ztz
T
t gives a linear least-squares

objective and a non-convex rank constraint.

E =
∑
t∈F

∑
(i,j)∈E

[
(bij)

T `− (ctij)
T s− tr(DijZt)

]2
(12)

E = ‖Ax‖22 , x =

`s
z

 , z =

vec(Z1)
...

vec(ZF )

 (13)

minimise
`,s,Zt

‖Ax‖22

subject to rank(Zt) ≤ 1,

` � 0, s � 0, 1T ` = 1.

(14)

B. Convex Relaxation

Fazel [17] presents the result that the nuclear norm of a
matrix ‖·‖∗ is the convex envelope of its rank. For a positive
semidefinite matrix,

‖A‖∗ = tr(A) =
∑

λ(A) = ‖λ(A)‖1 . (15)

Therefore minimising the trace of a positive semidefinite
matrix minimises the `1-norm of its eigenvalues, which
is likely to find a matrix which has a sparse vector of
eigenvalues (i.e. is low rank). We propose the following
convex optimisation, inspired by the work of Li [14],

minimise
`,s,{Zt}t∈F

∑
t∈F

tr(Zt)

subject to Zt � 0, ∀t ∈ F ,
Ax = 0, ∀t ∈ F , (i, j) ∈ E ,
` � 0, s � 0, 1T ` = 1.

(16)

Each vector of depths zt is recovered up to a sign ambiguity
using the SVD to find a rank-1 factorisation of Zt.

Note that the projections are now enforced by an equality
constraint. While it is possible to keep this term in the
objective and minimise the residual of the projection equa-
tions, we have found that the relaxation is too weak, and the
solution tends towards Zt matrices with small, non-sparse
eigenvalues.

V. SYNTHETIC EVALUATION OF RIGID SFM

A. Experiment

To test the validity of our claims concerning rigid SFM
when dealing with a small number of points that are close
to coplanar we generated a series of synthetic experiments.

Random scenes containing four points and five weak-
perspective cameras (with scale varying by a factor of
3) were constructed, then Gaussian noise of increasing
magnitude was added to each of the projections. A random
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(a) Experiment with non-coplanar structure
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(b) Experiment with coplanar structure

Figure 4: Median reconstruction error for the three algorithms described. When non-coplanar structure is observed, the
reconstruction error using Tomasi-Kanade factorisation decreases steadily with decreasing noise, whereas our proposed
algorithm does not recover a perfect reconstruction even for non-coplanar data with noiseless projections due to the relaxation.
However, it is much more robust to coplanarity than factorisation. Although Wei and Chai’s quartic objective sometimes
achieves accurate reconstructions, the median error is extremely large due to its high susceptibility to local minima.

point in each of the scenes was then projected on to the
plane defined by the other three, simulating a coplanar
tetrahedron characteristic of the human torso, and identical
noise was added to the projections. Comparing the behaviour
of reconstruction error with respect to increasing noise
between the coplanar and non-coplanar scenes shows how
robust (or otherwise) an SFM algorithm is to coplanarity.
Random points were generated uniformly in (−0.5, 0.5) and
random rotation matrices were generated using [18].

Reconstruction error was measured by the average edge
length error, giving a rotation-invariant metric. To compare
lengths to ground truth, they had to be scaled into and back
out of the camera frame. For example, if a reconstruction
algorithm estimates the scales to be ŝt and the ground truth
scales are st, then the error between the estimated length ˆ̀

ij

and true length `ij is

εij =
1

F

∑
t∈F

∣∣∣∣ 1st
(
ŝt ˆ̀ij

)
− `ij

∣∣∣∣ . (17)

B. Results

Experimental results are presented in Figure 4.
Tomasi and Kanade factorisation achieves perfect recon-

struction for non-coplanar points when there is no noise.
Performance deteriorates relatively quickly for increasing
noise because when there are only four points, W is exactly
rank-3 and the SVD does not remove any noise. When faced
with coplanar data, the metric reconstruction can only find

a poor solution due to the non-unique decomposition of W
into R̂ and Ŝ.

Wei and Chai’s SFM occasionally finds a good solution
but generally seems to end up in a local minima. It is prob-
ably possible to achieve better convergence by tweaking the
regularisation constant and the initialisation value, but this
sensitivity is exactly what makes the quartic optimisation
algorithm unattractive anyway.

Our convex graph rigidity method does not achieve zero
error even when there is no noise. This is because of the
“softness” of the relaxation. However, it is clearly more
robust to coplanarity than Tomasi and Kanade’s SFM, while
still providing a deterministic solution. The loss in accuracy
in using our algorithm when there is low projection noise
and non-coplanar structure suggests that an adaptive strategy
could be employed, where the magnitudes of the first three
singular values are compared to decide which algorithm to
use.

VI. APPLICATION TO HUMAN BODIES

A. Free Bones

After solving for the weak-perspective scales and the
structure of the torso using our graph-based algorithm, we
adopt the approach of Valmadre and Lucey [12], approxi-
mating the lengths of the remaining “free” bones (arms, legs



Figure 5: Four labeled images of golf player Tiger Woods from a set of six (top). Solution for human pose using our
relaxed graph rigidity method (middle). The same solution applied using Tomasi and Kanade’s SFM to solve for the rigid
sub-problem (bottom). The weak-perspective scale critically affects the length of the free bones due to Equation 18.
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Figure 6: Testing and training error for different values of k.
Given all possible discrete depth solutions for an example
pose, the classifier chooses the most likely one. It is possible
to achieve an error rate of 15-25% using small values of k.

and neck) by their maximum observed projection.

`ij ≈ max
t∈F

(
1

st
qtij

)
(18)

However, there still exists a two-fold sign ambiguity for each
free bone with non-zero depth.

B. Discrete Sign Ambiguities

Wei and Chai [7] used a second local optimisation stage to
minimise the projection error of the forward kinematic chain
subject to joint angle constraints drawn from biomechanics.
Two disadvantages of this method are that is not globally
optimal, being highly dependent on initialisation, and that
it will only present the user with a single random solution,
while there may be several which satisfy the constraints.

Valmadre and Lucey [12] pointed out that by treating
each rigid linkage independently, the full discrete solution
space could be easily enumerated. They evaluated the inverse
kinematics for each solution and eliminated those which
violate joint angle limits. A weakness of this method is
that when there are several valid solutions, it can be time
consuming to choose the correct one.

A critical downfall of both of these methods is that
the joint angle limits are too hard. If a solution is only
marginally outside the limits, it may be mistakenly elimi-
nated. This is exasperated by the non-linear nature of the
inverse kinematics solution. For example, when an elbow is
almost straight, the angle of twist at the shoulder becomes
very sensitive to small reconstruction errors.

C. Most Likely Pose

To avoid these issues, we propose a method to find the
most likely pose given a set of example poses. This is
posed as a k-nearest neighbour problem, where distance is
measured as the sum of Euclidean distances between each
joint in a limb. Rotation is normalised with respect to the



Figure 7: Four labeled images of tennis player Rafael Nadal from a set of nine (top). The discrete solution space after fixing
the direction of the torso and hips, with more likely configurations rendered more opaque (middle). The solution chosen by
a human user (bottom).

torso and bone lengths are re-scaled to their average. Of the
discrete set of solutions, the pose with the minimum-distance
k-nearest neighbour is determined to be the most likely.
Separate models were trained for arms, legs and the neck.
Left and right training examples were mirrored to leverage
the known symmetry of the human body.

Our kNN model was trained on 104 examples from the
CMU MOCAP database,1 using an 80/20 split to choose
k by cross-validation (see Figure 6). Qualitative results of
application to a real-world problem are shown in Figure 7,
using k = 3.

VII. CONCLUSION

We have presented a novel solution to rigid SFM using a
convex relaxation of graph rigidity. The algorithm has been
empirically shown to be more robust to situations involving
a small number of coplanar points, both quantitatively on
synthetic datasets and qualitatively on real world problems
using the human body. We acknowledge and experimentally
confirm that Tomasi and Kanade’s factorisation algorithm is
more accurate when the observed structure is not close to
coplanar. Additionally, we demonstrate a simple method for
choosing the most likely of a set of poses, which greatly
increases the efficiency of manually labelling frames for
markerless monocular MoCap.

1http://mocap.cs.cmu.edu/
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