
Problem
Known cameras, known 2D projections.

Find 3D trajectory x1, . . . , xF ∈ R3.

Each projection defines a 2 × 3 linear system
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Even with known cameras

2F equations < 3F unknowns

Trajectory Basis
Bregler et al. [1] used low-rank shape basis for NRSfM.

Akhter et al. [2] proposed shape-agnostic trajectory basis.

x = Θβ, Θ =





⊗ I3 (3F × 3K)

Structure obtained uniquely if 2F ≥ 3K (or is it. . . )

x∗ = Θβ∗, β∗ = arg min
β

‖w − RΘβ‖2

Reconstructability
Park et al. [3] noted fast camera motion led to better reconstructions.

Basis size K depends on camera speed and point trajectory.
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They defined reconstructability in terms of camera trajectory c

η(x, c, Θ) =

∥∥(I − ΘΘT)c
∥∥

2∥∥(I − ΘΘT)x
∥∥

2

=
[camera motion orth. to basis]

[point motion orth. to basis]

“As η → ∞, the solution approaches the true trajectory.”

Necessary but not sufficient for exact solution.

General Trajectory Prior

Minimise component orthogonal to basis M = (I − ΘΘT)

x∗ = arg min
x

‖x‖M subject to Rx = w

Low reconstructability results from poorly conditioned system.

Define new measure which theoretically bounds solution

‖x − x∗‖2 ≤ υ(x, R, M)

υ(x, R, M) = cond(RT
⊥MR⊥)︸ ︷︷ ︸

gain

∥∥RT
⊥Mx

∥∥
2∥∥RT

⊥MR⊥
∥∥

2︸ ︷︷ ︸
contradiction

K could be chosen by limiting the “gain” (condition).
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Trajectory Filters

Convolution is linear. Penalising high-pass filter response eliminates K.

‖g ∗ x‖2 = ‖x‖M with M = GTG
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Convolution-DCT Duality
Eigenvectors of symmetric convolution form the DCT basis.

Priors with more non-zero eigenvalues are better constrained.
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Real Sequences
dance sequence (one view shown)
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hand-wave sequence (one view shown)
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