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Abstract. This paper considers the problem of reconstructing the mo-
tion of a 3D articulated tree from 2D point correspondences subject
to some temporal prior. Hitherto, smooth motion has been encouraged
using a trajectory basis, yielding a hard combinatorial problem with
time complexity growing exponentially in the number of frames. Branch
and bound strategies have previously attempted to curb this complexity
whilst maintaining global optimality. However, they provide no guaran-
tee of being more efficient than exhaustive search. Inspired by recent
work which reconstructs general trajectories using compact high-pass
filters, we develop a dynamic programming approach which scales lin-
early in the number of frames, leveraging the intrinsically local nature of
filter interactions. Extension to affine projection enables reconstruction
without estimating cameras.

1 Introduction

Trajectory basis approaches to Non-Rigid Structure from Motion (NRSfM) are
able to model modes of deformation which traditional shape basis methods can-
not [2]. Unfortunately, their application is often limited by the issue of recon-
structability [3]. Articulated trajectories are a special class for which this is not
true. A trajectory is said to be articulated if it must remain a constant distance
from a parent trajectory at all times. The ability to reconstruct articulated tra-
jectories is valuable to any monocular vision task involving a skeleton, whether
it be human, animal or robotic.

Reconstructing an articulated trajectory given its parent trajectory, its pro-
jection in a known camera and the articulation length is a binary combinatorial
problem [1], since a forwards/backwards ambiguity exists at each time instant
(Figure 2). Although the projection constraints permit two solutions per frame,
our intuition (and Newton’s second law) suggests that any object which has
mass should move smoothly. Motivated by trajectory basis NRSfM, Park and
Sheikh [1] recently proposed to solve articulated trajectory reconstruction by
searching the finite feasible set for the trajectory nearest to a low-dimensional



2

Fig. 1: Solving for the trajectory of an articulated joint is a binary (k = 2) com-
binatorial problem. Park and Sheikh [1] minimised the distance of the trajectory
from a subspace, which has inseparable terms depending on the solution for all
frames (left). The worst-case time complexity of their algorithm is exponential
in the number of frames n. We present an approach which scales linearly in n
by considering only local interactions of order m (right).

subspace representative of this Newtonian behaviour. This is a discrete optimi-
sation problem with time complexity exponential in the number of frames. They
presented a globally optimal branch and bound strategy to reduce the running
time, however, it does so without theoretical guarantee.

The key contributions of this paper are that we:-

– Incorporate temporal prior using compact filters instead of a basis to yield a
globally optimal solution which scales linearly in the number of frames and
exponentially only in the support of the filter, which is generally a small
constant. Asymptotic time complexity is verified experimentally.

– Provide an elegant re-formulation of the projection constraints which en-
compasses affine as well as full perspective cameras. This extension enables
one to solve for articulated motion in camera co-ordinates without the need
to estimate camera calibration and root node position, provided that the
camera moves smoothly and a weak perspective assumption is reasonable.
Practical 3D reconstructions are demonstrated for videos of humans and an-
imals, in which the dimensions of the skeleton are a priori unknown and the
background makes camera estimation difficult.

The paper is structured as follows. Related work is briefly reviewed in §2.
The problem is defined in §3. Principles of dynamic programming which enable
application to filter responses are covered in §4 and the calibration-less extension
is introduced in §5. Experimental results are presented in §6 before concluding
in §7.

2 Related Work

There is a large body of literature on NRSfM, which aims to jointly estimate
cameras and deformable structure from 2D point correspondences alone. Unlike
rigid SfM, this is an inherently ill-posed problem since the structure can vary
between frames, resulting in more variables than equations. To counter this, two
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dominant paradigms for solving NRSfM have emerged, requiring either a) the
3D structure in each frame be restricted to a low-dimensional shape basis [4] or
b) the path of each point through time be restricted to a low-dimensional trajec-
tory basis [2]. Trajectory basis approaches are generally able to represent a larger
range of motion and can adopt a content-agnostic basis (typically that of the Dis-
crete Cosine Transform [DCT]), eliminating the need to solve for the unknown
basis vectors. However in situations of poor reconstructability, the accuracy with
which these methods can recover 3D structure is limited by the insufficient mo-
tion of the camera [3, 5]. Zhu et al. [6] showed that poor reconstructability can
be overcome if rigid keyframes are available, encouraging a sparse vector of
trajectory basis coefficients. Park and Sheikh [1] recently identified articulated
trajectory reconstruction as a problem which is not prone to reconstructability
due to the additional shape constraints. They solved the arising binary com-
binatorial problem using branch and bound, minimising the component of the
trajectory which is orthogonal to a truncated DCT basis. Other recent work has
considered using a shape basis with coefficients that lie on a trajectory basis [7],
using a spatiotemporal basis [8] and being completely basis-agnostic in favour of
a low-rank prior alone [9]. These approaches, however, can not take advantage
of known articulation constraints.

There are a number of earlier works examining the specific problem of artic-
ulated SfM, where the observed structure is known to be a collection of linked
rigid bodies. Tresadern and Reid [10] and Yan and Pollefeys [11] independently
established that the measurement matrix of two rigid objects is of lower rank
when they are connected at a joint or hinge, proposing factorisation-based algo-
rithms to recover the structure when segmentation is known. Yan and Pollefeys
additionally discovered the articulation topology and part segmentation using
Generalised Principal Component Analysis. Paladini et al. [12] later gave an it-
erative algorithm which, unlike approaches reliant on factorisation, can recover
articulated structure despite missing data. Fayad et al. [13] automatically as-
sign point tracks to rigid parts using graph cuts and recover 3D structure in an
alternation scheme. An issue with all of these methods is the requirement of reli-
able, dense point correspondences for each articulated segment, which frequently
cannot be obtained due to the slender, often texture-less nature of articulated
parts.

Our problem is also related to algorithms for articulated parts-based detec-
tion which employ a three-dimensional model. We should note, however, that
unlike the tracking and detection literature, our proposed approach begins with
the assumption that joint positions have been obtained. In the past, a slew of
particle filter approaches have been developed for 3D human body tracking.
Sidenbladh et al. [14] use a generative model of appearance with either generic
temporal smoothness or action-specific motion prior, also incorporating limits
on the range of joint angles. Sminchisescu and Triggs [15] propose a method for
intelligent sampling of pose configurations, explicitly considering the two-fold
ambiguity and pruning solutions based on kinematic limits and self-collision.
Unlike particle filter approaches, our algorithm recovers a deterministic, optimal
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solution in a batch scenario. More recent approaches learn a prior over the space
of human pose and motion in a Gaussian process framework [16,17]. These meth-
ods are capable of learning much higher-capacity models, but therefore require
a large volume of training data covering the space of possible configurations.
Physics-based approaches [18] have also been entertained, where a dynamical
model is fit to a video sequence. A drawback to these approaches, however, is
that they require a highly complex model to generalise beyond simple actions.
Wei and Chai [19] alternatively propose an interactive process for monocular
human motion capture which combines 3D keyframes, Newtonian physics and
contact constraints. The central appeal of articulated trajectory reconstruction,
as posed in [1], is that it employs only geometric constraints, allowing recon-
struction of a much broader class of articulated structures.

The problem of estimating articulated structure from a single image has
been considered in a number of notable works. Taylor [20] and Parameswaran
and Chellappa [21] require the user to manually specify the direction of each
bone, solving camera calibration using a weak perspective model with fixed rel-
ative bone-length proportions and using a full perspective model with a set of
landmarks on the head, respectively. Barrón and Kakadiaris [22] and Wei and
Chai [23] both find a single solution to the combinatorial problem by allowing a
non-linear optimisation to converge to a local minimum. Weak-perspective scale
is estimated using statistics of human anthropometry and rigid structure within
the body, respectively. Agarwal and Triggs [24] adopt an appearance-based ap-
proach, learning a regression from silhouettes to 3D pose for a synthetic training
set. This does not generalise well to a large range of pose configurations and
silhouettes can be difficult to obtain.

A number of previous works in non-rigid reconstruction have entertained a
temporal-differencing regularisation term (e.g. [25,26]). Valmadre and Lucey [5]
recently argued that requiring that a trajectory lie on a low-frequency DCT
basis is roughly equivalent to finding the trajectory with the minimum response
to a similar such high-pass filter, since the DCT bases are the eigenvectors of
symmetric convolution [27].

3 Problem Formulation

Let an articulated structure be an undirected graph with vertices V = {1, . . . , p}
and edges E . There exists a path between every pair of vertices and each edge
(i, j) ∈ E is labeled with a length `ij > 0. We will limit discussion to acyclic
graphs to avoid degenerate cases which arise when the projection ray must in-
tersect simultaneously with two spheres.

Let the configuration of an articulated structure at time t be denoted xt =
(xt1, . . . ,xtp) ∈ R3p, where xti ∈ R3 is the 3D position of point i. Each edge in
the graph provides the articulation constraint

‖xtj − xti‖2 = `ij . (1)

Each point i is observed at frame t by a pinhole camera Pt ∈ R3×4 as
projection wti ∈ R2. Every observation further constrains the system by the
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projective equality[
wti

1

]
' Pt

[
xti

1

]
⇔ Qtixti = uti, (2)

where (momentarily dropping subscripts t and i) Q = P1:2,1:3 − wP3,1:3 and
u = P3,4w−P1:2,4.1 Each matrix Qti has a 1D right nullspace corresponding to
the ray connecting the camera center and the projection on the image plane. The
above linear constraint forms the algebraic error term for linear reconstruction
algorithms in epipolar geometry.

The problem is thus to find the smoothest trajectory for all points x =
(x1, . . . ,xn) ∈ R3np which satisfies (1) and (2), given cameras {Pt}, projec-
tions {wti} and the trajectory of a root node {xt1}, as well as the graph topol-
ogy E and the articulation lengths {`ij}.

3.1 Finite Set of Feasible Solutions

Park and Sheikh [1] recognised that combining equations (1) and (2) yields two
feasible solutions per frame, representing the intersection of the projection ray
with the articulation sphere (Figure 2). Unlike in [1], however, we give a general
derivation of the binary ambiguity under the assumption of perspective or affine
cameras using the nullspace vector of the linear projection equations instead of
the camera center, which is only pertinent to perspective cameras.

Since each Qti is 2×3 and full rank, the position of a point can be decomposed

xti = x′ti + x⊥ti , (3)

where x′ti = Q†tiuti lies in the row-space of Qti and x⊥ti = αtiq
⊥
ti lies in the

1D nullspace of Qti, which is spanned by q⊥ti .
2 Substituting this result into the

articulation constraint (1) yields a quadratic equation∥∥x′tj + αtjq
⊥
tj − xti

∥∥2
2

= `2ij (4)

which, assuming the articulation constraint can be satisfied, has two real roots

αtj = ᾱtj(xti)±∆αtj(xti). (5)

This is illustrated geometrically in Figure 2. We emphasise above that these roots
depend on the position of parent joint i. Thus the two solutions are enumerated
by a binary variable stj ∈ {−1, 1},

xtj(stj ,xti) = x̄tj(xti) + stj ∆xtj(xti). (6)

1 The sub-matrix of rows {a, . . . , b} and columns {c, . . . , d} is denoted Aa:b,c:d.
2 The right matrix inverse is denoted A† = AT (AAT )−1.
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Fig. 2: With known camera P, parent point xi, edge length `ij and 2D projec-
tion wj , there is a two-fold ambiguity over the position of the endpoint xj in
each frame. This is true of full perspective and affine cameras.

with x̄tj(xti) = x′tj + ᾱtj(xti) q⊥tj and ∆xtj(xti) = ∆αtj(xti) q⊥tj . A complete
trajectory is described linearly in terms of a vector of signs sj ∈ {−1, 1}n

xj(sj ,xi) =

∆x1j(x1i)
. . .

∆xnj(xni)

 sj +

 x̄1j(x1i)
...

x̄nj(xni)

 . (7)

3.2 Temporal Prior

Trajectory basis NRSfM suggests that a matrix X ∈ Rn×3 describing a 3D tra-
jectory of length n can be efficiently represented X = ΦB, where Φ ∈ Rn×b is
a b-dimensional orthonormal basis and B ∈ Rb×3 is the matrix of basis coeffi-
cients. Vectorising this expression, x = Φ3β with x = vec(X), β = vec(B) and
Φ3 = Φ⊗ I3.3,4

Following their previous work on trajectory basis reconstruction with known
cameras [3], Park and Sheikh [1] sought an articulated trajectory which min-
imised the distance from trajectory space

E(x) = ‖x‖2M3
(8)

where M3 = M⊗ I3 with M = I−ΦΦT being the orthogonal projector to the
column-space of Φ.5 The problem for a single trajectory is therefore to minimise

f(sj) = E (xj (sj ,xi)) . (9)

Recent work [5] has shown that smoothness can alternatively be encouraged
in a trajectory by penalising its response to a compact high-pass filter, instead
constructing M = GTG, where

G =

gm · · · g1. . .
. . .

. . .

gm · · · g1

 (10)

3 The vec(·) operator stacks the columns of a matrix.
4 The ⊗ operator denotes the Kronecker (tiled) product.
5 A Mahalanobis distance is denoted ‖x‖2A = xTAx.
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represents convolution by a filter g ∈ Rm having support m � n. Filters are
an elegant formulation in that temporal constraints are enforced locally rather
than globally. This property is at the core of the efficient solution proposed
in Section 4.3. When temporal prior is enforced using trajectory filters, the
objective in (8) can be expressed

E(x) = ‖g ∗ x‖2F =

n−m+1∑
t=1

‖gmxt + · · ·+ g1xt+m−1‖22 . (11)

Assuming the trajectory of one joint in an articulated structure is known,
for example by general trajectory reconstruction [1,5] or by fixing it to the rigid
background, the trajectories of all joints may be found by recursively solving
this for all of the joint’s children. In the following section we will demonstrate
that the above problem can be solved in polynomial time for compact filters.
Our method also inherits the advantage of not having to specify the basis size b.

4 Dynamic Programming

4.1 Acyclic Graphs

The combinatorial optimisation problem of minimising a general function f :
{1, . . . , k}n → R has exponential time complexity O(kn). However, a well-known
result is that if the objective can be expressed

f(x) =

n∑
i=1

gi(xi) +
∑

(i,j)∈E

hij(xi, xj) (12)

and the undirected graph defined by the edge set E is acyclic, then the global
minimum can be found using dynamic programming in O(nk2) time. In the
machine learning community, this is known as the max-sum algorithm for doing
inference in graphical models [28]. Note that E is unrelated to the definition
of articulated structure in the previous section. Since this paper is primarily
concerned with solving for time sequences, we restrict ourselves to the case where
the graph is a chain,

f(x) =

n∑
i=1

gi(xi) +

n−1∑
i=1

hi(xi, xi+1). (13)

Dynamic programming gives a recursive definition for “partial solutions”

f∗i (xi+1) = min
xi

[
f∗i−1(xi) + hi(xi, xi+1)

]
+ gi+1(xi+1) (14)

such that the solution to the original problem is easily computed

min
x
f(x) = min

xn

f∗n−1(xn). (15)

Given a table of the previous partial solution f∗i−1 evaluated for all xi, the
following partial solution f∗i can be computed for all xi+1 in O(k2) time. Starting
with a trivial base case, the solution is found by induction in O(nk2) time.
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4.2 Sequences with Terms of m Consecutive Elements

The solution presented above is the special case of a lesser known result in
combinatorial optimisation, which is that if the objective can be expressed as a
sum of terms which depend on m consecutive elements

f(x) =

n−m+1∑
i=1

hi(xi, . . . , xi+m−1), (16)

then the global minimum can be found in O(nkm) time using dynamic program-
ming [29]. The recursive definition for a partial solution, which depends on m−1
elements and can be evaluated exhaustively in O(km) time, becomes

f∗i (xi+1, . . . , xi+m−1) = min
xi

[
f∗i−1(xi, . . . , xi+m−2) + hi(xi, . . . , xi+m−1)

]
, (17)

and the final solution is given

min
x1,...,xn

f(x1, . . . , xn) = min
xn−m+2,...,xn

f∗n−m+1(xn−m+2, . . . , xn), (18)

providing a solution by induction in O(nkm) time.

4.3 Application to Filter Responses

The general distance-from-subspace objective in (8) can be expressed

f(s) =

n∑
t=1

n∑
u=1

atu st su +

n∑
t=1

bt st + c, (19)

highlighting the maximally-connected interaction between variables (Figure 1).
However, the filter objective from (11) fits the form of (16), defining

hx,t(st, . . . , st+m−1) = ‖gm xt(st) + · · ·+ g1 xt+m−1(st+m−1)‖22 , (20)

where each xt maps {−1, 1} → R3. This makes it possible to minimise the re-
sponse of a sequence of length n to a filter with support m in O(n2m) time by
taking into account the known banded-diagonal structure of M in (8). Previ-
ous work [5] has found an effective filter choice to be a linear combination of
the responses to [1,−1] and [−1, 2,−1] filters, arguing that longer-support fil-
ters simply introduce unwanted degrees of freedom. The framework generalises
trivially to multiple filters by modifying hx,t.

5 Calibration-less Reconstruction

Articulated trajectory reconstruction typically assumes that the camera and
root node positions can be recovered from the background using rigid SfM. For
many “real-world” video sequences of interest, however, the background may lack
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sufficient structure or visual texture to reliably estimate cameras in this manner.
We recognise that, since articulated trajectories are immune to reconstructability
issues which arise from camera motion, it may be practical to assume a constant
camera and reconstruct the relative motion of the structure within the camera
reference frame. Small non-smooth camera motion (jitter) can be removed using
2D stabilisation. For a full perspective camera, we would still require an estimate
of the root trajectory in the camera reference frame. Adopting an affine camera
model allows us to estimate a scale parameter instead.

If the object maintains approximately constant distance from the camera,
reconstruction can be achieved by assuming constant scale σt = 1. If the object
possesses approximately-rigid sub-structure, rigid structure from motion can be
used to estimate scale [23, 30]. Finally, if the camera is zooming in and out,
scale may be computed from background objects which maintain their relative
out-of-plane orientation to the camera, such as trees and road-signs.

Once camera scale is known, the length of each edge in the articulation graph
can be estimated by its maximum observed projection

`ij = max
t

‖wtj −wti‖2
σt

(21)

as in [30]. This is a reasonable estimate due to the slow decay of the cosine
function at the origin. This also ensures that the articulation and projection
constraints will be feasible. If some edges are known to be of equal length, the
maximum over several edges can be used to improve the estimate.

6 Experiments

The reconstruction accuracy and running time of our proposed dynamic pro-
gramming algorithm have been evaluated on synthetic projections of the freely
available CMU human body Motion Capture (MoCap) dataset.6 The calibration-
less extension has been demonstrated on real world examples.

6.1 Accuracy and Efficiency

The performance of our proposed algorithm was compared to an implementation
of the branch and bound method using the same tools as [1] on synthetic pro-
jections of sequences from CMU MoCap. In these experiments the ground truth
perspective camera (constant throughout the sequence) and root node trajectory
were supplied to the algorithm. Note that [1] recommends following the discrete
optimisation with a non-linear refinement. Since we propose an alternative to
the discrete optimisation alone, there is no non-linear refinement in any of the
experiments.

Figure 3 shows conclusively that dynamic programming is orders of magni-
tude more efficient for long sequences. In fact, despite employing a branch and

6 http://mocap.cs.cmu.edu/

http://mocap.cs.cmu.edu/
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Fig. 3: Running time versus sequence length for the two reconstruction algo-
rithms. The trajectory basis objective may still take exponential time to solve de-
spite the branch and bound algorithm (left). The dynamic programming method
guarantees a solution in linear time (right). Both are globally optimal. The ex-
periment is for an 18-joint human body sequence from CMU MoCap.

bound strategy, the time complexity of the competing method still appears to
grow exponentially. Note that both implementations were written in Matlab and
neither is highly optimised. The fact that the running times are very similar for
short sequences suggests that this is a fair comparison.

Another advantage of the filter-based approach is that there is no need to
specify a basis size. While Park and Sheikh [1] identified that articulated tra-
jectory reconstruction is relatively insensitive to number of DCT bases used,
Figure 4 shows that the basis size needs to be chosen relatively large, and fail-
ure to do this correctly will still result in a poor reconstruction. We also show
empirically that choosing the wrong basis size affects the running time.

6.2 Calibration-less Reconstruction

Figure 5 compares the performance of general trajectory reconstruction with
known cameras [3] to that of articulated trajectory reconstruction with i) known
perspective cameras, known lengths and known root [1], ii) known weak perspec-
tive scale and known lengths and iii) known articulation topology only. Note that
results are normalised to the ground truth by an optimal rigid transformation
before comparison. This graph highlights that calibration-less articulated recon-
struction complements the existing domain of trajectory reconstruction prob-
lems, providing a method which does not need camera estimation at the cost
of decreased accuracy for faster cameras. In contrast, the original trajectory
reconstruction algorithm [3] fails when camera motion is slow.

Reconstructions are presented in Figures 6, 7, 8, 9 and 10 for several real
videos using the calibration-less approach. For the purposes of demonstration,
2D point correspondences were manually labeled. All of these sequences would be
challenging or impossible cases for automatic full perspective camera estimation.
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Fig. 4: While the basis size in [1] is not critical, an incorrect choice still adversely
affects the reconstruction (a). Filter prior obtains a slightly better reconstruction
than the best basis reconstruction. The filter objective could be minimised using
branch and bound but the reconstruction will be identical. The running time
of the branch and bound method varies with the basis size (b). Results were
averaged over 8× 800-frame sequences.

7 Conclusion

This paper has presented a globally optimal solution to articulated trajectory
reconstruction with worst-case time complexity linear in the number of frames
instead of exponential. This demonstrates that there are major practical ad-
vantages to the theoretical insight that temporal prior can be imposed using
compact trajectory filters rather than a trajectory basis. Experimental results
show an order of magnitude speed increase for sequences that are thousands of
frames long.

We also contribute a reformulation which incorporates affine as well as full
perspective cameras, showing that this allows reconstruction without solving for
perspective cameras if weak perspective scale can be heuristically estimated.
Reconstructions are demonstrated for videos of humans and animals.
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