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Abstract. Computer vision is increasingly becoming interested in the
rapid estimation of object detectors. The canonical strategy of using
Hard Negative Mining to train a Support Vector Machine is slow, since
the large negative set must be traversed at least once per detector. Recent
work has demonstrated that, with an assumption of signal stationarity,
Linear Discriminant Analysis is able to learn comparable detectors with-
out ever revisiting the negative set. Even with this insight, the time to
learn a detector can still be on the order of minutes. Correlation filters,
on the other hand, can produce a detector in under a second. However,
this involves the unnatural assumption that the statistics are periodic,
and requires the negative set to be re-sampled per detector size. These
two methods differ chiefly in the structure which they impose on the co-
variance matrix of all examples. This paper is a comparative study which
develops techniques (i) to assume periodic statistics without needing to
revisit the negative set and (ii) to accelerate the estimation of detectors
with aperiodic statistics. It is experimentally verified that periodicity is
detrimental.

1 Introduction

Historically in computer vision, the time required to train a detector has been
considered of minimal consequence because it only needs to be performed once.
However, a number of vision algorithms for modern tasks involve learning a mul-
titude of detectors, sometimes even in online settings. Examples include adaptive
tracking [1, 2], object detection with a large number of classes [3, 4], algorithms
for discovering discriminable clusters [5–7] and exemplar-based methods which
train a detector per example [8]. An algorithm which drastically reduces the time
and memory in which an effective detector can be trained has a big potential
impact on these higher-level tasks.

Detectors are generally trained using machine learning algorithms for clas-
sification. One of the immediate and fundamental questions is: how to treat
the enormous negative set? Any image which does not contain the object can
contribute all of its sub-images, quickly generating myriad negative examples.
Support Vector Machines (SVMs) are attractive in this regard, as they seek a
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Fig. 1. The set of all translated windows exhibits stationarity since a single pair of
pixels (indicated by the arrow) contributes to the statistics of all pairs with the same
relative displacement. This results in a covariance matrix with Toeplitz structure, which
Hariharan et al. [9] enforce to make estimation of the statistics of all windows feasible.

solution which depends on only a sparse subset of the examples (i.e. the support
vectors). Finding this set is, however, no easier than solving the original problem.
A popular heuristic is Hard Negative Mining (HNM), which alternates between
training a detector and adding possible support vectors to the training set. New
examples are found by using the current detector to exhaustively search a large
negative set for false positives, making HNM poorly suited to the aforementioned
tasks.

An alternative to SVMs is to entertain simple approaches which obtain a de-
tector as the solution to a system of linear equations w = S−1r whose dimension
is independent of the number of examples. These include Linear Discriminant
Analysis (LDA) and linear least-squares regression, in both of which S is a co-
variance matrix. Forming this system, however, tends to be computationally
prohibitive without some additional knowledge of the problem. This paper ex-
amines two algorithms which make different assumptions regarding the structure
of the covariance matrix, each with its own distinct motivation.

The first is the method of Hariharan et al. [9], in which the set of examples
is assumed to be stationary, resulting in a Toeplitz covariance matrix

Sui = g[i− u] . (1)

This redundant structure imposes the assumption that the covariance of sam-
ples x[u] and x[i] is governed exclusively by their relative position, indepen-
dent of their absolute position. This is motivated by the observation that any
sub-image or “window” of a natural image also belongs to the set of natural
images, therefore the statistics of the set of all natural images must be transla-
tion invariant (see Figure 1). The redundancy is sufficient to make estimation
of the covariance matrix computationally tractable. Adopting this assumption
within an LDA framework, comparable detection performance to HNM has been
demonstrated [9].

The second method is that of correlation filters [10, 11], in which all circular
shifts of each example are incorporated into the training set (see Figure 2). This
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Fig. 2. Henriques et al. approximated the set of all translated windows in an image
with all circular shifts (right) of a coarsely-sampled set of windows which cover the
image (left). This results in a circulant covariance matrix which can be inverted in
closed form. Rounded rectangles illustrate overlap.

manifests in a covariance matrix which is not only Toeplitz, but circulant

Sui = h[(i− u) mod m] (2)

for example signals of length m. The mod operator extends the assumption of
stationarity beyond the boundary of the signal, under periodic extension. We
refer to this stronger assumption as “periodic stationarity.” The set of all circular
shifts seems like an unnatural set to want to include, and indeed, the motivation
is entirely computational. The discrete Fourier basis constitutes eigenvectors for
any circulant matrix, meaning that efficient inversion can be performed using
the Fast Fourier Transform (FFT). Thus, while the Toeplitz covariance more
closely reflects the nature of the problem, the circulant system can be solved in
much less time and memory.

Another critical difference is that the elements of the circulant covariance
matrix depend on the signal size m, whereas those of the Toeplitz covariance
matrix do not. This is due to the difference between (1) and (2). Therefore the
Toeplitz covariance can be used to train detectors of arbitrary size and only
needs to be computed once. It can also be elegantly estimated from signals of
arbitrary size. In the circulant case, on the other hand, it is necessary to know
the size of the examples a priori, and then to choose and sample a representative
subset of windows of this size as in [12]. To train a detector of a different size,
the entire process must be repeated.

The first contribution of this paper is to develop a simple expression for the
(circulant) covariance matrix of all circular shifts of a set of windows of arbitrary
size with known Toeplitz covariance. This enables correlation filters to be learnt
from the stationary distribution alone, without the need to ever re-visit the
negative set.

The second contribution is to investigate methods for efficiently solving the
Toeplitz system, particularly in the case of two-dimensional signals such as im-
ages. While Toeplitz matrices are shown to produce higher quality detectors,
the raw speed of the non-iterative algorithm for circulant matrix inversion may
make it an attractive option despite the degradation of performance. We addi-
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tionally elucidate and evaluate a heuristic, discovered in previous work, which
significantly improves the performance of the circulant regime.

2 Background

2.1 Linear Discriminant Analysis with Stationarity

Linear Discriminant Analysis (LDA) is a generative approach to binary classi-
fication which models both classes with a Gaussian distribution, assuming that
the two distributions have the same covariance matrix to ensure that the dis-
criminant is an affine function f(x) = wTx + b. The optimal template w is
obtained in closed form w = S−1r, where r = x̄+− x̄− is the difference between
the means of the positive and negative classes and S is the covariance of all
examples. Typically when training a detector, the positive class is “object” and
the negative class is “not object.”

Let x1, . . . ,xn ∈ Rm denote n examples, each with m elements. It can be
assumed without loss of generality that the examples are zero-mean. The covari-
ance of these examples would typically be estimated

S =
1

n

n∑
k=1

xkx
T
k . (3)

This computation requires O(nm2) time and O(m2) memory. Clearly it is im-
practical to evaluate this on the set of all windows in a collection of images, where
n numbers thousands per image and m is the number of pixels in a window.

Hariharan et al. [9] recognised that the set of natural images exhibits sta-
tionarity. This is motivated by observing that all sub-images of a natural image
also belong to the set of natural images, therefore the statistics of the set of all
natural images must be translation invariant (see Figure 1).

Let us first consider each vector xk to be a scalar-valued time-series of length
m with samples xk[0], . . . , xk[m−1], before later generalising to feature images. If
the set of examples is drawn from a stationary distribution, then the covariance
matrix possesses a highly redundant Toeplitz structure Sui = g[i − u], which
encodes that the correlation of samples x[u] and x[i] depends only on their
relative position. For signals of length m, this m×m matrix is fully specified by
the 2m − 1 elements in g[δ], which is defined for δ = −m + 1, . . . ,m − 1. The
symmetry of the covariance matrix further implies g[δ] = g[−δ] and therefore m
elements are sufficient. The zero-mean assumption in this context is discussed
in Appendix B.1.

When considering detection problems in which the negative class is “not
object,” the covariance and mean are dominated by the negative set. Typically a
set of large signals φ1[t], . . . , φN [t] of length M ≥ m is available from which every
window of length m constitutes a negative example (as in the canonical HNM
problem). Under stationarity, the expected covariance is computed per relative
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displacement δ from all instances of that displacement in the large signals

g[δ] =
1

Nρ(δ)

N∑
k=1

b(δ)−1∑
t=a(δ)

φk[t] · φk[t+ δ] (4)

where the limits a(δ) = max(0,−δ) and b(δ) = M −max(0, δ) ensure that both
t and t+δ lie within the domain of the signal {0, . . . ,M −1}. The normalisation
factor ρ(δ) = b(δ) − a(δ) = M − |δ| counts the number of occurrences of the
displacement δ in each signal (shorter displacements are observed more times).
Unlike the true covariance matrix, which is a sum of outer products, a Toeplitz
matrix obtained in this fashion is not guaranteed to be positive semidefinite.
Given enough data, however, the eigenvalues converge to non-negativity.

If the covariance matrix were computed naively from the full set of M −
m + 1 overlapping windows contained in each signal, its estimation would take
O(Mm2) time. Using the above expression, statistics can instead be gathered
directly from each large signal in O(Mm) time. Furthermore, this method only
requires O(m) memory instead of O(m2).

Hariharan et al. [9] applied this technique to the problem of computing the
covariance of every translated window in a set of larger images, which would
otherwise have been intractable. To obtain a detector, they finally instantiated
the full covariance matrix and employed a direct method such as Cholesky de-
composition, noting that it was necessary to add some small regularisation λI.
Since the negative examples dominate the statistics, the mean of the negative
class is taken to be that of the stationary distribution so that r = x̄+ − x̄.

2.2 Correlation Filters

The algorithm of correlation filters [10] in its unconstrained form [11] is simply
linear least-squares regression applied to the set of all circular shifts of every
example. While including circular shifts in the training set may seem peculiar,
it leads to a system of equations which can be constructed and solved in the
Fourier domain.

It is a famous result that LDA is equivalent to linear least-squares regression
when the desired outputs of the regression problem take on exactly two distinct
values, corresponding to the two classes [13]. Given a set of general vectors
x1, . . . ,xn ∈ Rm with desired outputs y1, . . . , yn ∈ R, the regularised problem,
also known as ridge regression, finds the solution to

min
w,b

1

2n

n∑
k=1

(
wTxk + b− yk

)2
+
λ

2
‖w‖2 . (5)

If the examples are assumed to be zero-mean, then the solution is obtained by
taking the bias to be the mean label b = ȳ, and solving for the template in

min
w

1

2n

n∑
k=1

(
wTxk − yk

)2
+
λ

2
‖w‖2 . (6)
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The optimal template is obtained in closed form w = (S+λI)−1r with S defined
as in (3) and the right-hand side given

r =
1

n

n∑
k=1

ykxk . (7)

See Appendix B.2 for the derivation. Note that if we choose yk = 0 for negative
examples, then they do not appear in the solution beyond their contribution to
the covariance and the mean.

Let us again consider each xk to be a scalar-valued time-series of length
m. Computing the expected covariance of all circular shifts of these examples
generates a circulant matrix Sui = h[(i − u) mod m]. This m × m matrix is
defined by only m unique elements, or dm/2e accounting for symmetry. These
are estimated from data according to

h[δ] =
1

mn

n∑
k=1

m−1∑
t=0

xk[t] · xk[(t+ δ) mod m] . (8)

See Appendix B.3 for the derivation. This means that the covariance of two
samples x[u] and x[i] is estimated from all pairs of samples which have rela-
tive displacement (i− u) mod m, including some displacements which cross the
boundary of the signal and wrap around.

Circulant matrices can be inverted efficiently in the Fourier domain because
a matrix-vector product amounts to periodic cross-correlation. Let ? denote the
periodic cross-correlation operator such that

(w ? x)[u] =

m−1∑
t=0

w[t] · x[(u+ t) mod m] (9)

for u = 0, . . . ,m − 1, and recall that this is equivalent to element-wise multi-
plication in the Fourier domain F{w ? x} = conj(ŵ) ◦ x̂, where we denote the
Fourier transform of a signal F{x} = x̂. Multiplication by the circulant covari-
ance matrix z = Sw computes the cross-correlation z = h ? w or equivalently
ẑ = conj(ĥ)◦ŵ. This enables the re-expression of w = (S+λI)−1r as a diagonal
system of equations

ŵ =
[
diag(conj(ĥ)) + λI

]−1

r̂ . (10)

Whereas a general m × m system of equations requires O(m3) time to solve
via factorisation, the solution to this system is obtained in O(m) time, with
O(m logm) additional time required to compute the FFT. Further, while fac-
torisation algorithms generally require O(m2) space to store the full matrix, this
system can be solved in O(m) space.

The system in (10) can also be constructed in the Fourier domain since

h[δ] =
1

mn

n∑
k=1

(xk ? xk)[δ] , r[u] =
1

mn

n∑
k=1

(yk ? xk)[u] . (11)
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See Appendix B.4 for the derivation. This can be performed inO(nm logm) time.
Taking the desired response function yk[t] to be zero everywhere for negative
examples and an impulse function (1 at the origin, 0 everywhere else) for positive
examples results in the same right-hand side r = x̄+ − x̄ as in LDA.

Henriques et al. [12] proposed correlation filters as an alternative to HNM.
They approximated the set of all windows in an image by the set of all circular
shifts of a subset of windows which was sufficient to cover the image with signif-
icant overlap (see Figure 2). This subset would need to be re-sampled to train a
detector of a different size.

2.3 Related Work

A number of other works have used fast correlation in the Fourier domain to
accelerate the process of training a detector. Anguita et al. [14] used it to effi-
ciently compute subgradients when training an SVM across all windows in a set
of images. However, this is liable to be even slower than HNM, since the negative
set must be traversed per gradient descent iteration. Dubout and Fleuret [15]
treated images as mini-batches within stochastic descent and used the FFT to
efficiently compute the subgradient of the objective function across all windows
in an image. While this is undoubtedly more efficient than naively computing
inner products, it cannot rival the closed-forms solution of correlation filters.

Rodriguez et al. [16] proposed an objective function which comprises a hinge
loss on each un-shifted example plus a least-squares loss on all circular shifts,
and showed that it can be solved in a canonical SVM framework. They noted
that the loss over circular shifts can be considered a linear transformation of the
space in which the margin is measured as in [17]. Our paper provides a method
to obtain such a transformation from a large training set, without the need to
re-compute it for different sizes. It would also be possible to adopt the Toeplitz
matrix in their framework to eliminate periodic effects.

Henriques et al. [18] showed that the kernel matrix of circularly shifted ex-
amples also exhibits block-circulant structure, where the size of the blocks is
the number of base examples rather than of the number of feature channels. We
restrict discussion to the primal form in this paper, since we are primarily inter-
ested in learning from a large number of examples. In addition to ridge regres-
sion, the same authors used the dual formulation to approximately solve Support
Vector Regression (SVR) in a canonical co-ordinate descent framework [12].

3 Fast Estimation of the Toeplitz Covariance

The previous section established that the circulant system is not only solved
but also constructed efficiently in the Fourier domain. In this section, we briefly
demonstrate that the FFT can likewise be used to construct the Toeplitz system.

It’s clear on inspection of (4) that the elements of the Toeplitz matrix
Sui = g[i − u] are computed by a sum of (non-periodic) auto-correlations. Let
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us introduce ψk to denote φk padded from length M to length P = M +m− 1
with zeros. Then g can be obtained via periodic auto-correlation

g[δ] =
1

Nρ(δ)

N∑
k=1

(ψk ? ψk)[δ mod P ] , (12)

taking only the subset δ = −m+1, . . . ,m−1 of each output. See Appendix B.5 for
details. Comparing this expression to (11), the unique elements of the Toeplitz
matrix g[δ] can be obtained in almost exactly the same manner as those of the
circulant matrix h[δ].

This can be performed using the FFT in O(M logM) time per signal. This
implies that the statistics can be gathered for any window size m ≤ M with-
out affecting the asymptotic computational complexity. As far as we know, the
original authors did not take advantage of this aspect of the problem.

4 From Toeplitz to Circulant

We have now established that the Toeplitz and circulant covariance matrices can
be estimated with similar computational effort, and that the circulant system
can be solved very efficiently. However, a distinct advantage of adopting the
Toeplitz covariance is that, comparing (4) and (8), its elements do not depend
on the length m of the template w. This means that the same covariance g[δ]
could be used to learn affine functions f(x) = wTx + b of different sizes.

It also provides a far more elegant way to obtain statistics from a set of
larger signals, of which every sub-signal could be considered a negative example.
Unlike correlation filters, where it is necessary to sample windows of size m, the
stationary covariance can be estimated from the whole signal as in (4).

This section formulates an expression for the elements of the circulant matrix
h[δ] from those of the Toeplitz matrix g[δ]. This is performed in the same way
that a circulant matrix is obtained in correlation filters: by incorporating all
circular shifts of all signals in some set. The set which we consider is one which
possesses stationarity.

Theorem 1. If a set of length-m signals is stationary with Toeplitz covariance
matrix Sij = g[j− i], then the covariance of the set of all circular shifts of these
signals is circulant Sij = h[(j − i) mod m] with elements

h[δ] = (1− θ) g[δ mod m] + θ g[−(−δ mod m)] (13)

for δ = 0, . . . ,m− 1 with θ = (δ mod m)/m.

Proof. See Appendix A.

This is a convex combination of the Toeplitz covariance for the relative dis-
placements of (δ mod m) and −(−δ mod m), with greater weight given to the
smaller of the two. The intuition behind this is that, under periodic extension, a
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Fig. 3. Under periodic extension, a relative displacement δ 6= 0 from every position
in the signal is more often observed as the smaller displacement of the two modulo
complements. For example, a small positive and a large negative displacement are
both predominantly observed as a small positive displacement.

given displacement from every position in the signal is more often observed as the
smaller of it and its modulo complement (see Figure 3). This expression enables
correlation filters of arbitrary size to be trained from a stationary distribution,
without having to choose explicit negative examples. The result is generalised
to two-dimensional vector-valued signals in the following section.

5 Multi-Channel, Two-Dimensional Signals

This section generalises the results thus far from time-series to feature images, or
from single-channel, one-dimensional signals to multi-channel, two-dimensional
signals. We denote elements samples of a feature image xp[u, v] for channel p at
position (u, v).

5.1 Toeplitz Covariance Matrix

For the covariance matrix of two-dimensional signals of size m×` with c channels,
we replace u ← (u, v, p) and i ← (i, j, q), using (u, v) and (i, j) to denote 2D
positions and p and q denote feature indices. Stationarity of such signals is
expressed in the constraint

S(u,v,p),(i,j,q) = gpq[i− u, j − v] , (14)

where the four-dimensional array gpq[du, dv] has c2(2m−1)(2`−1) elements. We
refer to the structure of this covariance matrix as “block two-level Toeplitz.” The
symmetry of S gives the further redundancy gpq[du, dv] = gqp[−du,−dv]. Note
that there is no assumption of stationarity across channel indices p and q. This
matrix can also be efficiently estimated in the Fourier domain with appropriate
zero-padding as in Section 3 (see Appendix B.6). The multi-channel stationary
mean is constant per-channel x̄p[u, v] = µp.

For a particular vectorisation of the feature image, this m`c×m`c matrix is
an m ×m Toeplitz matrix of ` × ` Toeplitz matrices of c × c blocks. However,
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we prefer to remain agnostic to the order of vectorisation and use joint indices
(u, v, p). What matters is that S is a linear operator which maps Rm`c → Rm`c
such that z = Sx implies

zp[u, v] =

m−1∑
i=0

`−1∑
j=0

c∑
q=1

gpq[i− u, j − v] · xq[i, j] . (15)

5.2 Circulant Covariance Matrix

Variously known as Vector Correlation Filters or Multi-Channel Correlation Fil-
ters, the periodic case is similar to the pure stationary case, with elements of
the covariance matrix defined

S(u,v,p),(i,j,q) = hpq[(i− u) mod m, (j − v) mod `] . (16)

The only difference is the introduction of the modulo operators. The four-
dimensional array hpq[du, dv] has c2m` elements, with the symmetry of the ma-
trix yielding the further redundancy hpq[du, dv] = hqp[−du mod m,−dv mod `].

Rather than being diagonalised by the 1D Fourier transform, this “block
two-level circulant” matrix is block-diagonalised by applying the 2D Fourier
transform to each channel independently, a fact which a slew of recent vision
papers have taken advantage of [19, 20, 12, 21]. After transforming each channel,
the problem decomposes into a c × c complex linear system of equations per
sample. See Appendix B.7 for the form of these equations.

Introducing d = m` to denote the number of pixels, the time required to
compute necessary transforms and then solve these systems of equations is
O(c2d log d + c3d). Once the system has been constructed and each block fac-
torised, subsequent solutions can be be obtained in O(c2d + cd log d) time for
back-substitution and inverse transforms. The memory required is the same as
to store hpq[du, dv]. In contrast, to solve this system using factorisation would
take O(c3d3) time and O(c2d2) memory, with subsequent solutions obtained in
O(c2d2) time. For even modest template sizes, this makes an enormous differ-
ence. Furthermore, transforms of each channel and inversions of each block can
be performed in parallel.

5.3 From Toeplitz to Circulant

The case for 2D signals is more involved since displacements can wrap around
horizontal and/or vertical boundaries. Elements of the circulant matrix are given

hpq[du, dv] = (1− α)(1− β) gpq[ du mod m, dv mod `]

+ (1− α) β gpq[ du mod m, −(−dv mod `)]

+ α(1− β) gpq[−(−du mod m), dv mod `]

+ α β gpq[−(−du mod m), −(−dv mod `)] (17)

with α = (du mod m)/m, β = (dv mod `)/`. The derivation follows the same
technique as the one-dimensional case.
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6 Solving Toeplitz Systems

Unfortunately, Toeplitz matrices are not diagonalised by the Fourier transform
as circulant matrices are. There is, however, an extensive and varied body of
literature surrounding the solution of Toeplitz systems, and we briefly review
some key results.

6.1 Direct Methods

Recall that a general m×m system of equations can be factorised in O(m3) time
with subsequent solutions obtained in O(m2) time. Levinson recursion [22, 23] al-
lows Toeplitz systems to instead be factorised in O(m2) time, with the Gohberg-
Semencul formula [24] enabling solutions to then be obtained inO(m logm) time.
This is entirely without inflicting the O(m2) memory requirement of instantiat-
ing the explicit matrix or its inverse. There also exist “superfast” or “asymptotic”
algorithms [25, 26] which solve a system in O(m log2m) time without factorisa-
tion, although the hidden coefficients can be large. Levinson recursion has been
generalised to solve mc × mc block Toeplitz systems, comprising an m × m
Toeplitz structure of arbitrary c× c blocks, in an algorithm that takes O(c3m2)
time [27]. This is useful for multi-channel, one-dimensional signals.

Unfortunately, in the extension to two-level Toeplitz matrices, which are our
primary interest in vision, algorithms based on Levinson recursion cannot do
better than to treat one level as a general matrix [28, 29]. For m × ` images
with c feature channels, this only enables inversion of the Toeplitz covariance
matrix in O(c3 min(m2`3,m3`2)) time. A handful of obscure exceptions have
been identified [30, 29], although they do not seem pertinent to us.

6.2 Iterative Methods

While the Fourier transform cannot be used directly to invert a Toeplitz matrix,
it does enable fast evaluation of matrix-vector products. This is achieved by
extending an m ×m Toeplitz matrix to form a (2m − 1) × (2m − 1) circulant
matrix. This does extend to block two-level Toeplitz matrices, as z = Sx gives

zp[u, v] =

c∑
q=1

m−1∑
i=0

`−1∑
j=0

gpq[i− u, j − v]xq[i, j] =

c∑
q=1

(gpq ? x̃
q)[u, v] (18)

where x̃q[u, v] denotes a zero-padded version of xq[u, v]. For images with d pixels
and c channels, this allows multiplication to be performed in O(c2d log d) time,
all without instantiating the full matrix.

The existence of a fast multiplication routine suggests iterative first-order
methods. In fact, a number of past works have proposed to solve Toeplitz systems
using the Preconditioned Conjugate Gradient (PCG) method. The convergence
rate of this algorithm depends on the condition number of the matrix and how
tightly clustered its eigenvalues are [31]. PCG considers the equivalent problem
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MSw = Mr, where the preconditioner M must be full rank and MS has more
desirable spectral properties than S alone. Most works have centered around
the choice of preconditioner, with Chan and Ng [32] in particular arguing that
an effective preconditioner renders the number of iterations a small constant,
yielding the solution to an m×m Toeplitz system in O(m logm) time.

The ideal choice is M = S−1, however to obtain this matrix is to solve
the original problem. Inverse circulant matrices make attractive precondition-
ers because they are easily computed and circulant matrices are in some sense
“close” to Toeplitz matrices. Strang [33] originally proposed a circulant matrix
which used only the inner diagonals of the Toeplitz matrix and was shown to
guarantee superlinear convergence for a large class of problems [34]. Chan [35]
instead considered the nearest circulant matrix and observed empirically that it
was more effective at reducing the condition number and producing a clustered
spectrum. Two-level circulant preconditioners have previously been explored for
block Toeplitz [36] and two-level Toeplitz systems [32], but to our knowledge
not for block two-level Toeplitz systems. Serra Capizzano and Tyrtyshnikov [37]
presented the theoretical result that multi-level circulant preconditioners are not
guaranteed superlinear convergence for multi-level Toeplitz matrices by the same
mechanism as one-level, noting that fast convergence is still possible in practice.

Somewhat surprisingly, the circulant covariance matrix which we obtained in
Section 4 is in fact the nearest (block multi-level) circulant matrix, analogous to
the preconditioner in [35]. Therefore we can optionally employ the circulant solu-
tion (i.e. learn a correlation filter) as a preconditioner within conjugate gradient.
This preconditioner results in significantly faster convergence (see Figure 6).

To summarise, this leaves us with several options to learn a detector. Firstly,
we can choose to solve either the Toeplitz or the circulant system. If we choose to
solve the circulant system, it is done in closed form. If we instead decide to solve
the Toeplitz system, then we can either solve it directly by Cholesky decomposi-
tion or iteratively using conjugate gradient, with or without the circulant inverse
as a preconditioner.

6.3 An Effective Heuristic

The performance of the detector learnt using circulant covariance can be greatly
increased with a simple heuristic, which is to train a larger detector than desired
and then crop it after training. This was discovered in a subset of the experiments
of [12], although as far as we are aware, it has not previously been discussed.
Figure 4 shows that nearly identical performance to the Toeplitz method is
achieved. One extra feature pixel on all sides was found to be sufficient.

While we do not have a theoretical analysis of the cropping heuristic, it at
least makes intuitive sense. The most highly correlated feature pixels are those
which are adjacent. A circulant matrix considers two pixels on opposite edges
to be adjacent. The probable discontinuity between these elements in the mean
positive image is likely to be something which the detector learns about the
positive set. That one feature pixel is sufficient suggests that the correlation of
samples decays rapidly with increasing distance.
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7 Empirical Study

Experiments were conducted on HOG images [38] using the 31-channel imple-
mentation of [39]. The stationary statistics were estimated once from four million
random images from ImageNet [3] to illustrate that all techniques can draw on a
huge number of negative examples. Regularisation λI was added with λ = 10−2.
Further practical details are found in Appendix C.

7.1 Detection Performance

The detectors learnt under Toeplitz and circulant assumptions were compared for
the task of pedestrian detection (see Figure 4). Toeplitz was found to consistently
outperform circulant. Surprisingly, learning with a circulant matrix and using
the extend-and-crop heuristic rivals the performance of the Toeplitz method.
The detectors were evaluated on the ETHZ Shape Classes dataset [40], although
the results were found to be noisy and less conclusive due to its insufficient size
(see Appendix D).
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7.2 Time and Memory

Figure 5 plots the average performance of each detector against its training time.
Figure 6 shows how the time and memory demands of the different algorithms
grow with template size. We present times with and without pre-computable
factorisations and transforms included (note that these must be performed per
detector size). Algorithms were implemented in Go, making use of FFTW and
LAPACK where appropriate.

Cholesky factorisation is fast for compact templates. However, as the tem-
plate size grows, it becomes relatively slow unless the factorisation can be pre-
computed. The memory required to store such a factorisation also grows rapidly
with the template size, soon reaching gigabytes. This makes it impractical to
cache and load factorisations for several detector sizes, and may simply be infea-
sible or restrictive in some scenarios. For the problem of pedestrian detection,
conjugate gradient offers a speed increase of nearly two orders of magnitude over
computing the factorisation. The direct circulant method is several times faster
again, however this requires one to either accept diminished performance or em-
ploy the cropping heuristic, the behaviour of which is not yet well understood.

8 Conclusion

Toeplitz and circulant covariance matrices have both previously been employed,
within simplistic classifiers, to avoid Hard Negative Mining when learning from
a large negative set. This paper has elucidated commonalities between these two
techniques and proposed improvements to each. Compared to existing methods
which use Toeplitz structure, identical detectors are obtained in orders of mag-
nitude less time and memory. Circulant methods were shown to offer a further
order of magnitude increase in speed for a small degradation of performance.
Compared to existing methods which use circulant structure, the negative set
does not need to be revisited per detector size. These are exciting developments
for higher-level vision algorithms which involve learning linear templates.
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A Proof of Theorem 1

Proof. Recall that assuming stationarity of the set of examples from which the
statistics are estimated results in a covariance matrix with Toeplitz structure

Sui =
1

n

n∑
k=1

xk[u] · xk[i] = g[i− u] . (19)

To obtain a circulant covariance matrix, instead consider the statistics of the
augmented set containing all circular shifts t = 0, . . . ,m− 1 of every example

Sui =
1

mn

n∑
k=1

m−1∑
t=0

xk[(t+ u) mod m] · xk[(t+ i) mod m] . (20)

This is shown to be circulant by replacing t← t− u

Sui =
1

mn

n∑
k=1

m−1∑
t=0

xk[t] · xk[(t+ i− u) mod m] = h[(i− u) mod m] (21)

since (t+ δ) mod m = (t+ (δ mod m)) mod m. To obtain h[δ] from g[δ], we split
the summation based on whether (t+ δ) mod m < t. Thus the inner sum in the
above expression becomes

m−1∑
t=0

xk[t] · xk[(t+ δ) mod m] =

(−δ mod m)−1∑
t=0

x[t] · x[t+ (δ mod m)]

+

m−1∑
t=(−δ mod m)

x[t] · x[t− (−δ mod m)] . (22)

Combining (19), (21) and (22) yields the final formula. ut

B Derivations

B.1 Zero-Mean Assumption in LDA with Stationarity

If the examples are not zero-mean, then the covariance matrix is computed

S̃ =
1

n

n∑
k=1

(xk − x̄)(xk − x̄)T . (23)

Rather than subtract the mean from every example, this “centering” can be
performed using the identity S̃ = S− x̄x̄T .

Under stationarity, the mean is a constant image x̄ = µ1, where µ is the
mean sample value and 1 is vector of all ones. Therefore the difference between
the two matrices S − S̃ = µ211T is a uniformly-valued matrix, and they have
identical structure.
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B.2 Ridge Regression Formulation

Differentiating the objective function in (5) with respect to b yields

1

n

n∑
k=1

(
wTxk + b− yk

)
= 0 (24)

b = ȳ −wT x̄ . (25)

We will not enforce the zero-mean assumption in this derivation. Making this
substitution, the weights can be found by solving

min
w

1

2n

n∑
k=1

[
wT (xk − x̄)− (yk − ȳ)

]2
+
λ

2
‖w‖2 . (26)

This is equivalent to
min
w

1
2wT (S̃ + λI)w −wT r̃ (27)

and hence also to the linear equation

(S̃ + λI)w = r̃ (28)

where S̃ is defined in Appendix B.1 and the right-hand side is given

r̃ =
1

n

n∑
k=1

(yk − ȳ)(xk − x̄) (29)

or any of the following equivalent expressions

r̃ =
1

n

n∑
k=1

yk(xk − x̄) =
1

n

n∑
k=1

(yk − ȳ)xk =
1

n

n∑
k=1

ykxk − ȳx̄ . (30)

Returning to the zero-mean assumption, S̃ = S and r̃ = r.

B.3 Circulant Covariance of Circularly Shifted Examples

Let xkt denote example xk shifted by t pixels such that its elements are given

xkt[i] = xk[(t+ i) mod m] . (31)

The expected covariance of samples u and i computed from every shift t =
0, . . . ,m− 1 of every example k = 1, . . . , n is

Sui =
1

mn

n∑
k=1

m−1∑
t=0

xkt[u] · xkt[i] (32)

=
1

mn

n∑
k=1

m−1∑
t=0

xk[(t+ u) mod m] · xk[(t+ i) mod m] (33)

=
1

mn

n∑
k=1

m−1∑
t=0

xk[t] · xk[(t+ i− u) mod m] (34)

= h[(i− u) mod m] (35)
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and therefore the matrix is circulant with elements

h[δ] =
1

mn

n∑
k=1

m−1∑
t=0

xk[t] · xk[t+ δ mod m] . (36)

B.4 Forming Circulant System in Fourier Domain

It follows from (8) that

h[δ] =
1

mn

n∑
k=1

m−1∑
t=0

(xk ? xk)[δ] (37)

or equivalently

ĥ =
1

mn

n∑
k=1

conj(x̂k) ◦ x̂k . (38)

Considering (7) computed on the set of circular shifts xkt as defined in Ap-
pendix B.3 for all t = 0, . . . ,m− 1 yields

r[u] =
1

mn

n∑
k=1

m−1∑
t=0

yk[t]xkt[u] (39)

=
1

mn

n∑
k=1

m−1∑
t=0

yk[t]xk[(u+ t) mod m] (40)

=
1

mn

n∑
k=1

(yk ? xk)[u] (41)

or equivalently

r̂ =
1

mn

n∑
k=1

conj(ŷk) ◦ x̂k . (42)

B.5 Fast Estimation of the Toeplitz Covariance

Recall that the purpose of a(δ) and b(δ) in (4) was to limit the summation over
t to the range of values such that both t and t+δ are in {0, . . . ,M−1}. Defining
the zero-padded signal ψ

ψk[t] =

{
φk[t], 0 ≤ t < M

0, M ≤ t < P ,
(43)

it is no longer necessary to limit the range. If |δ| ≤ m − 1 and either t + δ < 0
or t+ δ > M − 1, then ψk[(t+ δ) mod P ] = 0. This enables the expression to be
written as a modulo-P summation over t = 0, . . . , P − 1

g[δ] =
1

Nρ(δ)

N∑
k=1

P−1∑
t=0

ψk[t] · ψk[(t+ δ) mod P ] , (44)

which is thus periodic cross-correlation as in (12).
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B.6 Multi-Channel Two-Dimensional Toeplitz Covariance

The elements of the multi-channel two-dimensional Toeplitz covariance matrix
can be estimated from N larger signals φp[u, v] of size M × L with c channels.
Individual elements are found from all instances of the relative displacement
(du, dv) in the image using

gpq[du, dv] =
1

NρM (du)ρL(dv)

N∑
k=1

bM (du)−1∑
u=aM (du)

bL(dv)−1∑
v=aL(dv)

φpk[u, v] · φqk[u+ du, v + dv].

(45)
The region (u, v) ∈

{aM (du), . . . , bM (du)− 1} × {aL(dv), . . . , bL(dv)− 1} (46)

ensures that both (u, v) and (u+ du, v+ dv) are within the domain of the image
{0, . . . ,M−1}×{0, . . . , L−1}. The normalisation factor ρM (du)ρL(dv) measures
the size of this region. These functions are defined

aM (du) = max(0,−du) bM (du) = M −max(0, du) (47)

ρM (du) = bM (du)− aM (du) = M − |du| . (48)

As was the case for scalar-valued time-series, the Toeplitz covariance matrix
can be efficiently computed in the Fourier domain. Let ψk denote the signal φk
padded with zeros to size P ×Q with P = M +m− 1 and Q = L+ `− 1. The
covariance can be computed as a sum of cross-correlations between channel pairs

gpq[du, dv] =
1

NρM (du)ρL(dv)

N∑
k=1

(ψpk ? ψ
q
k)[du mod P, du mod Q]. (49)

This takes O(c2D logD) time per image, where D = ML is the number of pixels.

B.7 Multi-Channel Circulant Inverse

Examining the product z = Sw element-wise reveals

zp[u, v] =

m−1∑
i=0

`−1∑
j=0

c∑
q=1

hpq[(i− u) mod m, (j − v) mod `] · wq[i, j] , (50)

which is a sum over circular cross-correlations

zp[u, v] =

c∑
q=1

(hpq ? w
q)[u] . (51)

Let ĥpq = F{hpq} and ŵp = F{wp} denote the 2D Fourier transform of these
m × ` signals. Then the matrix-vector product is equivalent to an independent
c× c complex system of equations per pixel (u, v) in the Fourier domain

ẑ[u, v] = Ĥuv ŵ[u, v] (52)
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where x̂[u, v] = (x̂1[u, v], . . . , x̂c[u, v]) samples the Fourier transform of all chan-
nels at frequency (u, v), and the matrix Ĥuv is constructed from the Fourier
transform of all cross-channel covariance pairs (p, q) according to

Ĥuv =

(
ĥ∗pq[u, v]

)
pq

. (53)

Therefore to compute w = S−1r, it is sufficient to compute

ŵ[u, v] = Ĥ−1
uv r̂[u, v] (54)

for every position (u, v) and then take the inverse transform wp = F−1{ŵp} of
each channel.

C Practical Details

Our INRIA examples were 12× 33 feature images, each extracted from a region
of 62×146 pixels centered on a bounding box of 43×128 pixels. For the Caltech
dataset, each example was a 9 × 19 feature image extracted from a region of
50 × 90 pixels, corresponding to a bounding box of 26 × 64 pixels. The HOG
descriptor of [39] was slightly modified to eliminate minor boundary effects. The
results presented here all used a cell size of four pixels.

Figure 4 was produced using the code of [12], with a few minor changes, to fa-
cilitate comparison. However, the average precision cited in Figures 5 and 6 was
measured using our own implementation. For these experiments, practical de-
tails were as follows. Multi-scale search was performed in geometric steps of 1.07
(roughly 10 scales per octave). Detections were selected greedily by score, with
each detection suppressing all candidates with which it shared an intersection-
over-union of more than 30%. Candidates which were not a maximum in their lo-
cal four-connected neighbourhood were not considered. Detections were deemed
to be true positives if they have more than 50% intersection-over-union with a
ground-truth box. Each ground truth label can only match to one detection and
this is performed greedily, with the highest scoring detection taking the rectangle
with which it overlaps the most.

D Further Empirical Results

These results were not included in the main text because they are noisy and less
conclusive, due to the insufficient size of the dataset.
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Fig. 7. Precision versus recall for ETHZ Shape Classes dataset. Average precision
shown in parentheses.


